

BIOLOGICAL
SCIENCES

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS ŏ

the light manifest as photoinhibition? Do oxidative stress conditions impairing photosynthesis in

THE ROYAL

SOCIETY

Éva Hideg, Kálai Tamás, Kálmán Hideg and Imre Vass

doi: 10.1098/rstb.2000.0711 Phil. Trans. R. Soc. Lond. B 2000 **355**, 1511-1516

References <http://rstb.royalsocietypublishing.org/content/355/1402/1511#related-urls> Article cited in:

BIOLOGICAL

SCIENCES

**PHILOSOPHICAL
TRANSACTIONS**

 $OF-$

Email alerting service Receive free email alerts when new articles cite
top right-hand corner of the article or click **[here](http://rstb.royalsocietypublishing.org/cgi/alerts/ctalert?alertType=citedby&addAlert=cited_by&saveAlert=no&cited_by_criteria_resid=royptb;355/1402/1511&return_type=article&return_url=http://rstb.royalsocietypublishing.org/content/355/1402/1511.full.pdf)** Receive free email alerts when new articles cite this article - sign up in the box at the

To subscribe to Phil. Trans. R. Soc. Lond. B go to: **<http://rstb.royalsocietypublishing.org/subscriptions>**

This journal is © 2000 The Royal Society

BIOLOGICAL SCIENCES

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS

DO OXIDATE SURFE ROTAL
 DO OXIDATIVE STRESS CONDITIONS IMPAIRING
 DO OXIDATIVE STRESS CONDITIONS IMPAIRING poditions
photosynthesis in the light manifest
photosynthesis in the light manifest re stress conditions im
thesis in the light mai
as photoinhibition?

Eva Hideg^{1*}, Tamás Kálai², Kálmán Hideg² and Imre Vass¹

Éva Hideg^{1}, Tamás Kálai², Kálmán Hideg² and Imre Vass¹
¹Institute of Plant Biology, Biological Research Centre, H-6701 Szeged, PO Box 521, Hungary
priment of Oxaanic and Medicinal Chamictery University of Pécs,* ² Institute of Plant Biology, Biological Research Centre, H-6701 Szeged, PO Box 521, Hungary²
² Department of Organic and Medicinal Chemistry, University of Pécs, H-7643 Pécs, PO Box 99, Hungary²

²Department of Organic and Medicinal Chemistry, University of Pécs, H-7643 Pécs, PO Box 99, Hungary
We compared the effect of photoinhibition by excess photosynthetically active radiation (PAR), UV-B
irradiation combine We compared the effect of photoinhibition by excess photosynthetically active radiation (PAR), UV-B
irradiation combined with PAR, low temperature stress and paraquat treatment on photosystem (PS) II.
Although the experime We compared the effect of photoinhibition by excess photosynthetically active radiation (PAR), UV-B
irradiation combined with PAR, low temperature stress and paraquat treatment on photosystem (PS) II.
Although the experime irradiation combined with PAR, low temperature stress and paraquat treatment on photosystem (PS) II.
Although the experimental conditions ensured that the four studied stress conditions resulted in
approximately the same e Although the experimental conditions ensured that the four studied stress conditions resulted in approximately the same extent of PS II inactivation, they clearly followed different molecular mechanisms. Our results show t approximately the same extent of PS II inactivation, they clearly followed different molecular mechanisms. Our results show that singlet oxygen production in inactivated PS II reaction centres is a unique characteristic of mechanisms. Our results show that singlet oxygen production in inactivated PS II reaction centres is a unique characteristic of photoinhibition by excess PAR. Neither the accumulation of inactive PS II (as in paraquat reac unique characteristic of photoinhibition by excess PAR. Neither the accumulation of inactive PS II
reaction centres (as in UV-B or chilling stress), nor photo-oxidative damage of PS II (as in paraquat
stress) is able to pr photoinhibition.

Keywords: photosynthesis; oxidative stress; singlet oxygen; DanePy fluorescence

1. INTRODUCTION

Increased production of reactive oxygen species (ROS) **HERODOCTION**
Increased production of reactive oxygen species (ROS)
has been associated with a number of stress conditions in
plants (for reviews see Hendry 1994: Inze & Van Increased production of reactive oxygen species (ROS)
has been associated with a number of stress conditions in
plants (for reviews, see Hendry 1994; Inze & Van
Montagu 1995; Smirnoff 1995; Hideg 1997) ROS bave has been associated with a number of stress conditions in
plants (for reviews, see Hendry 1994; Inze & Van
Montagu 1995; Smirnoff 1995; Hideg 1997). ROS have
been recognized in at least one of the following roles: plants (for reviews, see Hendry 1994; Inze & Van
Montagu 1995; Smirnoff 1995; Hideg 1997). ROS have
been recognized in at least one of the following roles: Montagu 1995; Smirnoff 1995; Hideg 1997). ROS have
been recognized in at least one of the following roles:
elicitors or propagators of oxidative damage or signal
molecules for repair processes. Their production site and been recognized in at least one of the following roles:
elicitors or propagators of oxidative damage or signal
molecules for repair processes. Their production site and
function may be different under different stress cond elicitors or propagators of oxidative damage or signal
molecules for repair processes. Their production site and
function may be different under different stress condi-
tions and also depend on the antioxidant capacity of molecules for repair processes. Their production site and
function may be different under different stress condi-
tions, and also depend on the antioxidant capacity of the
plant. The toxicity of ROS is caused by their reac function may be different under different stress condi-
tions, and also depend on the antioxidant capacity of the
plant. The toxicity of ROS is caused by their reactivity,
which also makes them difficult to detect and iden tions, and also depend on the antioxidant capacity of the plant. The toxicity of ROS is caused by their reactivity, which also makes them difficult to detect and identify, especially *in vivo*. plant. The toxicity of ROS is caused by their reactivity,
which also makes them difficult to detect and identify,
especially *in vivo*.
Unusually, light also appears to be a stress factor and
the primary target of light st

especially *in vivo*.

Unusually, light also appears to be a stress factor and

the primary target of light stress is the site of light energy

use: the photosynthetic apparatus (Powles, 1984) Unusually, light also appears to be a stress factor and
the primary target of light stress is the site of light energy
use: the photosynthetic apparatus (Powles 1984).
Although in the field all stress conditions occur in l the primary target of light stress is the site of light energy
use: the photosynthetic apparatus (Powles 1984).
Although in the field all stress conditions occur in light,
the interpretation is probably not simple. Photoin use: the photosynthetic apparatus (Powles 1984).
Although in the field all stress conditions occur in light,
the interpretation is probably not simple. Photoinhibition
by excess photosynthetically active radiation (PAR) Although in the field all stress conditions occur in light,
the interpretation is probably not simple. Photoinhibition
by excess photosynthetically active radiation (PAR)
damages the reaction centre of the photosystem (PS) the interpretation is probably not simple. Photoinhibition
by excess photosynthetically active radiation (PAR)
damages the reaction centre of the photosystem (PS) II
complex of the photosynthetic apparatus which is located by excess photosynthetically active radiation (PAR)
damages the reaction centre of the photosystem (PS) II
complex of the photosynthetic apparatus, which is located
in the thylakoid membrane of higher plant chloroplasts damages the reaction centre of the photosystem (PS) II
complex of the photosynthetic apparatus, which is located
in the thylakoid membrane of higher plant chloroplasts.
Photoiphibition has been extensively studied in vitro complex of the photosynthetic apparatus, which is located
in the thylakoid membrane of higher plant chloroplasts.
Photoinhibition has been extensively studied *in vitro*, in in the thylakoid membrane of higher plant chloroplasts.
Photoinhibition has been extensively studied *in vitro*, in isolated membrane preparations and a definitive sequence
of events has emerged. In this model, excess PAR Photoinhibition has been extensively studied *in vitro*, in isolated membrane preparations and a definitive sequence of events has emerged. In this model, excess PAR leads to impairment of PS II electron transport, which i isolated membrane preparations and a definitive sequence
of events has emerged. In this model, excess PAR leads to
impairment of PS II electron transport, which is followed
by selective degradation of the DLPS II reaction of events has emerged. In this model, excess PAR leads to impairment of PS II electron transport, which is followed by selective degradation of the D1 PS II reaction centre impairment of PS II electron transport, which is followed
by selective degradation of the DI PS II reaction centre
protein and by more general membrane protein and lipid
damage (for reviews see Barber & Andersson 1992: Pra by selective degradation of the DI PS II reaction centre
protein and by more general membrane protein and lipid
damage (for reviews, see Barber & Andersson 1992; Prasil
 $_{et}$ al 1999: Aro et al 1993) protein and by more genera
damage (for reviews, see Ba
et al. 1992; Aro *et al.* 1993).

Direct observation of ROS by spin trapping electron Direct observation of ROS by spin trapping electron
paramagnetic resonance (EPR) spectroscopy demon-
strated that photoiphibition by excess PAR is an Direct observation of ROS by spin trapping electron
paramagnetic resonance (EPR) spectroscopy demon-
strated that photoinhibition by excess PAR is an
ovidative stress (Hider et al. 1994a: Hirayama et al. paramagnetic resonance (EPR) spectroscopy demonstrated that photoinhibition by excess PAR is an oxidative stress (Hideg *et al.* 1994*a*; Hirayama *et al.* 1996: Vruela *et al.* 1996). Among the particular path strated that photoinhibition by excess PAR is an oxidative stress (Hideg *et al.* 1994*a*; Hirayama *et al.* 1996; Yruela *et al.* 1996). Among the particular pathoxidative stress (Hideg *et al.* 1994*a*; Hirayama *et al.* 1996; Yruela *et al.* 1996). Among the particular pathways of damage an important one is recognized as acceptor side induced photoinhibition, which occurs 1996; Yruela *et al.* 1996). Among the particular pathways of damage an important one is recognized as acceptor-side-induced photoinhibition, which occurs when photosynthetically active over a system acceptor-side-induced photoinhibition, which occurs
when photosynthetically active, oxygen-evolving acceptor-side-induced photoinhibition, which occurs
when photosynthetically active, oxygen-evolving
preparations are illuminated with excess PAR in the
presence of oxygen In this process double reduction when photosynthetically active, oxygen-evolving
preparations are illuminated with excess PAR in the
presence of oxygen. In this process, double reduction
of the first PS II quinone acceptor O results in presence of oxygen. In this process, double reduction
of the first PS II quinone acceptor Q_A results in
increased reaction centre chlorophyll triplet formation of the first PS II quinone acceptor Q_A results in (Vass *et al.* 1992; Vass & Styring 1992) and, consequently, in singlet oxygen production. There are (Vass *et al.* 1992; Vass & Styring 1992) and, consequently, in singlet oxygen production. There are strong indications that the above ROS are involved in the specific clasure of the $\overline{D}l$ protein: singlet quently, in singlet oxygen production. There are
strong indications that the above ROS are involved in
the specific cleavage of the D1 protein: singlet
oxygen generating substances cause D1 protein from strong indications that the above ROS are involved in
the specific cleavage of the D1 protein: singlet
oxygen-generating substances cause D1 protein frag-
mentation to the same specific fragments as does the specific cleavage of the D1 protein: singlet
oxygen-generating substances cause D1 protein fragmentation to the same specific fragments as does
acceptor side induced photoiphibition by excess PAR oxygen-generating substances cause D1 protein fragmentation to the same specific fragments as does
acceptor-side-induced photoinhibition by excess PAR
(Mishra et al. 1994: Okada et al. 1996) Since the prinmentation to the same specific fragments as does
acceptor-side-induced photoinhibition by excess PAR
(Mishra *et al.* 1994; Okada *et al.* 1996). Since the prin-
cipal cause of photoinhibition in this model is the acceptor-side-induced photoinhibition by excess PAR (Mishra *et al.* 1994; Okada *et al.* 1996). Since the principal cause of photoinhibition in this model is the imbalance between energy intake and processing, it is plausible, that any stress condition, that suppresses cipal cause of photoinhibition in this model is the
imbalance between energy intake and processing, it is
plausible that any stress condition that suppresses
photosynthetic electron transport or exhausts excess imbalance between energy intake and processing, it is
plausible that any stress condition that suppresses
photosynthetic electron transport or exhausts excess
energy relaxation mechanisms would manifest as plausible that any stress condition that suppresses
photosynthetic electron transport or exhausts excess
energy relaxation mechanisms would manifest as
photoinhibition. The aim of the present work was to photosynthetic electron transport or exhausts excess
energy relaxation mechanisms would manifest as
photoinhibition. The aim of the present work was to
analyze this question on the basis of POS detection in energy relaxation mechanisms would manifest as
photoinhibition. The aim of the present work was to
analyse this question on the basis of ROS detection *in*
ring analyse this question on the basis of ROS detection *in vivo*.
Singlet oxygen production in acceptor-side-induced

photoinhibition has been confirmed *in vitro*, in isolated
photoinhibition has been confirmed *in vitro*, in isolated
photosynthetically active membrane preparations Singlet Singlet oxygen production in acceptor-side-induced photosinhibition has been confirmed *in vitro*, in isolated photosynthetically active membrane preparations. Singlet oxygen has been detected with various techniques photoinhibition has been confirmed *in vitro*, in isolated
photosynthetically active membrane preparations. Singlet
oxygen has been detected with various techniques

BIOLOGICA CIENCES ROYAL THEE $\overline{\mathbf{S}}$ **PHILOSOPHICAL**
TRANSACTIONS

Figure 1. Chemical structure of DanePy and its nitroxide radical form DanePyO.

including spin trapping EPR spectroscopy (Hideg *et al.* including spin trapping EPR spectroscopy (Hideg *et al.* 1994*b*), infrared chemiluminescence (MacPherson *et al.* 1993) and chemical trapping (Telfer *et al.* 1994) Extension including spin trapping EPR spectroscopy (Hideg *et al.* 1994*b*), infrared chemiluminescence (MacPherson *et al.* 1993) and chemical trapping (Telfer *et al.* 1994). Extension of our EPR results to *in ring* (leaf studies 1994*b*), infrared chemiluminescence (MacPherson *et al.* 1993) and chemical trapping (Telfer *et al.* 1994). Extension of our EPR results to *in vivo* (leaf studies) was hampered by technical difficulties caused by the bi 1993) and chemical trapping (Telfer *et al.* 1994). Extension of our EPR results to *in vivo* (leaf studies) was hampered by technical difficulties caused by the high water content of the leaves and the short lifetime of

of our EPR results to *in vivo* (leaf studies) was hampered
by technical difficulties caused by the high water content
of the leaves and the short lifetime of the probe within
the leaf (Hidea *et al* 2000) A new technique by technical difficulties caused by the high water content
of the leaves and the short lifetime of the probe within
the leaf (Hideg *et al.* 2000). A new technique was needed.
DangPy is a double sensor consisting of a fluo of the leaves and the short lifetime of the probe within
the leaf (Hideg *et al.* 2000). A new technique was needed.
DanePy is a double sensor consisting of a fluorophore,
dansyl and a sterically hindered amine attached t the leaf (Hideg *et al.* 2000). A new technique was needed.
DanePy is a double sensor consisting of a fluorophore,
dansyl, and a sterically hindered amine attached to a
nyrroline ring (figure 1) (Kálai *et al.* 1998). Thi DanePy is a double sensor consisting of a fluorophore,
dansyl, and a sterically hindered amine attached to a
pyrroline ring (figure 1) (Kálai *et al.* 1998). This
compound is fluorescent and diamagnetic Reaction with dansyl, and a sterically hindered amine attached to a an antibody raised against a synthetic peptide corresponding to pyrroline ring (figure 1) (Kálai et al. 1998). This the C-terminus of pea D1 protein, a kind gift from singlet oxygen converts the amine into a nitroxide radical. compound is fluorescent and diamagnetic. Reaction with
singlet oxygen converts the amine into a nitroxide radical.
The resulting compound (DanePyO) is paramagnetic
(data not shown) and has lower fluorescence than singlet oxygen converts the amine into a nitroxide radical.
The resulting compound (DanePyO) is paramagnetic
(data not shown) and has lower fluorescence than
DanePy (figure $2a$) Using this sensor we were able to The resulting compound (DanePyO) is paramagnetic
(data not shown) and has lower fluorescence than
DanePy (figure 2*a*). Using this sensor, we were able to
demonstrate singlet over production in leaves exposed (data not shown) and has lower fluorescence than
DanePy (figure 2*a*). Using this sensor, we were able to
demonstrate singlet oxygen production in leaves exposed
to photoiphibition by excess $\frac{p_{AB}}{q}$ (Hideo *et al.* 1 DanePy (figure 2*a*). Using this sensor, we were able
demonstrate singlet oxygen production in leaves expos
to photoinhibition by excess PAR (Hideg *et al.* 1998*a*).
Our earlier *in vitro* studies showed that among varia monstrate singlet oxygen production in leaves exposed
photoinhibition by excess PAR (Hideg *et al.* 1998*a*).
Our earlier *in vitro* studies showed that among various
ht stress conditions singlet oxygen production seemed t

to photoinhibition by excess PAR (Hideg *et al.* 1998*a*).
Our earlier *in vitro* studies showed that among various light stress conditions singlet oxygen production seemed to Our earlier *in vitro* studies showed that among various
light stress conditions singlet oxygen production seemed to
be a unique characteristic of PS II under acceptor-side-
induced photoinhibition. Neither donor-side-indu light stress conditions singlet oxygen production seemed to
be a unique characteristic of PS II under acceptor-side-
induced photoinhibition. Neither donor-side-induced
photoinhibition (Hideg et al. 1994a) por ultraviolet be a unique characteristic of PS II under acceptor-side-
induced photoinhibition. Neither donor-side-induced
photoinhibition (Hideg *et al.* 1994*a*) nor ultraviolet B
(UVR) irradiation (Hideg & Vass 1996) appeared as sing induced photoinhibition. Neither donor-side-induced
photoinhibition (Hideg *et al.* 1994*a*) nor ultraviolet B
(UVB) irradiation (Hideg & Vass 1996) appeared as singlet
oxygen-mediated stress: both were associated with ot photoinhibition (Hideg *et al.* 1994*a*) nor ultraviolet B
(UVB) irradiation (Hideg & Vass 1996) appeared as singlet
oxygen-mediated stress; both were associated with other
types of ROS mainly hydroxyl radicals. In the pre (UVB) irradiation (Hideg & Vass 1996) appeared as singlet
oxygen-mediated stress; both were associated with other
types of ROS, mainly hydroxyl radicals. In the present
study we carried out a comparative study of PS II fu oxygen-mediated stress; both were associated with other earlier (Hideg *et al.* 1998*a*). Singlet oxygen types of ROS, mainly hydroxyl radicals. In the present ized as relative fluorescence quenching, -
study, we carried types of ROS, mainly hydroxyl radicals. In the present
study, we carried out a comparative study of PS II function
and D1 protein degradation, *in vivo*, in photoinhibited leaves
and in leaves exposed to other types of oxi study, we carried out a comparative study of PS II function
and D1 protein degradation, *in vivo*, in photoinhibited leaves
and in leaves exposed to other types of oxidative stress (low
temperature, herbicide or UVB irradi and D1 protein degradation, *in vivo*, in photoin
and in leaves exposed to other types of oxidat
temperature, herbicide or UVB irradiation).

2. MATERIAL AND METHODS

Tobacco (*Nicotiana tabacum* L.) plants were grown in a Tobacco (*Nicotiana tabacum* L.) plants were grown in a
greenhouse, under 80–100 μ mol m⁻²s⁻¹ PAR, 20–25°C. Leaf Tobacco (*Nicotiana tabacum* L.) plants were grown in a
greenhouse, under 80–100 μ molm⁻²s⁻¹ PAR, 20–25°C. Leaf
disks were cut from the tip region of six-week-old leaves
symplic the midnih section. These semples were disks were cut from the tip region of six-week-old leaves Q avoiding the midrib section. These samples were kept on wet tissue paper on a thin layer of water with their adaxial sides up and exposed to one of the following stress conditions: (i) photo- \bigcirc tissue paper on a thin layer of water with their adaxial sides up tissue paper on a thin layer of water with their adaxial sides up
and exposed to one of the following stress conditions: (i) photo-
inhibition by 1500 µmol m⁻²s⁻¹ PAR at room temperature,
(ii) impediation with 25 µmol and exposed to one of the following stress conditions: (i) photo-
inhibition by 1500 μ mol m⁻²s⁻¹ PAR at room temperature,
(ii) irradiation with 25 μ mol m⁻²s⁻¹ UVB (280-320nm) and
100 umol m⁻²s⁻¹ PAR at r $100 \,\mathrm{\mu mol\,m}^{-2}\,\mathrm{s}^{-1}$ PAR at room temperature, (iii) chilling at 1500 μ mol m⁻²s⁻¹ PAR at room temperature,

i with 25 μ mol m⁻²s⁻¹ UVB (280-320nm) and

s⁻¹ PAR at room temperature, (iii) chilling at (ii) irradiation with 25 μ mol m⁻²s⁻¹ UVB (280-320nm) and
100 μ mol m⁻²s⁻¹ PAR, at room temperature, (iii) chilling at
5 °C under 400 μ mol m⁻²s⁻¹ PAR, or (iv) 7.5 mM paraquat at 100 µmol m⁻²s⁻¹ PAR at room temperature, (ii)
5 °C under 400 µmol m⁻²s⁻¹ PAR, or (iv) 7.5 mN
room temperature under 100 µmol m⁻²s⁻¹ PAR.
- PAR was provided through an antical fibre guid C under 400 μ mol m⁻²s⁻¹ PAR, or (iv) 7.5 mM paraquat at
om temperature under 100 μ mol m⁻²s⁻¹ PAR.
PAR was provided through an optical fibre guide from a KL-
00 (DMR Suitzerland) lamp. This illumination sexue

1500 (DMP, Switzerland) lamp. This illumination caused no PAR was provided through an optical fibre guide from a KL
1500 (DMP, Switzerland) lamp. This illumination caused no
local warming of the samples, even when $1500 \,\mu\text{mol m}^{-2} \text{s}^{-1}$
PAP, were explied. In parameterizations 1500 (DMP, Switzerland) lamp. This illumination caused no
local warming of the samples, even when 1500μ mol m⁻²s⁻¹
PAR were applied. In paraquat stress, leaf disks were preincubated with paraquat in the dark for 1h before illumination
and papement was contained in the floating medium incubated with paraquat in the dark for 1h before ill
and paraquat was contained in the floating medium.
En PS H estivity and DI pretain measurements For Ps II activity and D1 protein measurements, thylakoid
For PS II activity and D1 protein measurements, thylakoid
mehranes were propered from the leaf disks immediately

and paraquat was contained in the floating medium.

For PS II activity and D1 protein measurements, thylakoid

membranes were prepared from the leaf disks immediately

of the stress. Photographics guygen membranes were prepared from the leaf disks immediately
after the cessation of the stress. Photosynthetic oxygen membranes were prepared from the leaf disks immediately
after the cessation of the stress. Photosynthetic oxygen
evolution was measured with oxygen polarography (Hansatech,
 V_K) wing dimethyl hangoguinane as electron acce after the cessation of the stress. Photosynthetic oxygen
evolution was measured with oxygen-polarography (Hansatech,
UK) using dimethyl-benzoquinone as electron acceptor. Net
DJ protein centent was determined wing Western-UK) using dimethyl-benzoquinone as electron acceptor. Net D1 protein content was determined using Western blotting with an antibody raised against a synthetic peptide corresponding to Nixon (Imperial College of Science, Technology and Medicine, London, UK) after separation of thylakoid membrane proteins by SDS polyacrylamide gel electrophoresis. mdon, UK) after separation of thylakoid membrane proteins
SDS polyacrylamide gel electrophoresis.
Singlet oxygen detection was based on the reaction of singlet
was usited DanaPa (2 (M distribulationing that) M danaph

by SDS polyacrylamide gel electrophoresis.

Singlet oxygen detection was based on the reaction of singlet

oxygen with DanePy (3-(*N*-diethylaminoethyl)-*N*-dansyl)-

ominomethyl 9.5 dihydro 9.9.55 tatamathyl 1*H* numals) oxygen with DanePy (3-(N-diethylaminoethyl)-N-dansyl)-
aminomethyl-2,5-dihydro-2,2,5,5-tetramethyl-lH-pyrrole), yielding a nitroxide radical (DanePyO, 3-(*N*-diethyl-aminoethyl)-*N*-
dansyl) aminomethyl-2,5-dihydro-2,2,5,5-tetramethyl-*H*-pyrrol-
1-yloxyl), which is EPR active and has lower fluorescence than dansyl) aminomethyl-2,5-dihydro-2,2,5,5-tetramethyl- H -pyrroldansyl) aminomethyl-2,5-dihydro-2,2,5,5-tetramethyl-*H*-pyrrol-
1-yloxyl) which is EPR active and has lower fluorescence than
DanePy (Kálai *et al.* 1998). Leaf disks were infiltrated with 1-yloxyl), which is EPR active and has lower fluorescence than
DanePy (Kálai *et al.* 1998). Leaf disks were infiltrated with
50 mM DanePy and fluorescence emission spectra were recorded
with a Quanta Mastar OM 1 (Photon 50 mM DanePy and fluorescence emission spectra were recorded
with a Quanta Master QM-1 (Photon Technology Int., Inc., South Brunswick, NJ, USA) using 345 nm excitation as described with a Quanta Master QM-1 (Photon Technology Int., Inc.,
South Brunswick, NJ, USA) using 345 nm excitation as described
earlier (Hideg *et al.* 1998*a*). Singlet oxygen trapping is character-South Brunswick, NJ, USA) using 345 nm excitation as described
earlier (Hideg *et al.* 1998*a*). Singlet oxygen trapping is character-
ized as relative fluorescence quenching, $-\Delta F/F$, at the 532 nm
emission maximum of Dan ized as relative fluorescence quenching, $-\Delta F/F$, at the 532 nm

3. RESULTS

Figure 2 illustrates the measurement of singlet oxygen 5. **RESOLTS**
Figure 2 illustrates the measurement of singlet oxygen
production in leaves using DanePy. As shown in figure 2*a*,
there is a marked difference between the fluorescence emis-Figure 2 illustrates the measurement of singlet oxygen
production in leaves using DanePy. As shown in figure 2a,
there is a marked difference between the fluorescence emis-
sion of DanePy and its nitrovide radical form. D production in leaves using DanePy. As shown in figure 2*a*, there is a marked difference between the fluorescence emission of DanePy and its nitroxide radical form, DanePyO. In the experiment shown in figure 2*a*, leaves w there is a marked difference between the fluorescence emission of DanePy and its nitroxide radical form, DanePyO.
In the experiment shown in figure 2*a*, leaves were infil-
trated by one of these two forms of the double se sion of DanePy and its nitroxide radical form, DanePyO.
In the experiment shown in figure 2a, leaves were infiltrated by one of these two forms of the double sensor. On
the basis of this difference in fluorescence intensit In the experiment shown in figure $2a$, leaves were infiltrated by one of these two forms of the double sensor. On the basis of this difference in fluorescence intensity, singlet trated by one of these two forms of the double sensor. On
the basis of this difference in fluorescence intensity, singlet
oxygen production can be characterized as fluorescence
quenching of DanePy (Kálai et al. 1998; Hide the basis of this difference in fluorescence intensity, singlet
oxygen production can be characterized as fluorescence
quenching of DanePy (Kálai *et al.* 1998; Hideg *et al.* 1998*a*).
Figure 2h shows that this quenching oxygen production can be characterized as fluorescence
quenching of DanePy (Kálai *et al.* 1998; Hideg *et al.* 1998*a*).
Figure 2*b* shows that this quenching occurred when a
DanePy-infiltrated leaf was exposed to photoin quenching of DanePy (Kálai *et al.* 1998; Hideg *et al.* 1998*a*).
Figure 2*b* shows that this quenching occurred when a
DanePy-infiltrated leaf was exposed to photoinhibition.
In order to characterize the stress-induced Figure 2b shows that this quenching occurred when a DanePy-infiltrated leaf was exposed to photoinhibition.
In order to characterize the stress-induced damage to PS II we measured the loss of electron transport activity DanePy-infiltrated leaf was exposed to photoinhibition.

and the relative amount of D1 protein. Experimental PS II we measured the loss of electron transport activity
and the relative amount of D1 protein. Experimental
parameters were set in order to ensure that the loss of
PS II activity followed approximately the same timeand the relative amount of DI protein. Experimental
parameters were set in order to ensure that the loss of
PS II activity followed approximately the same time-
course during the four different types of stress conditions parameters were set in order to ensure that the loss of
PS II activity followed approximately the same time-
course during the four different types of stress conditions
applied (data not shown). Inactive reaction centres w PS II activity followed approximately the same time-
course during the four different types of stress conditions
applied (data not shown). Inactive reaction centres were
defined as ones containing DI protein but unable to course during the four different types of stress conditions

BIOLOGICAL

 $\mathbf{\alpha}$ E

BIOLOGICAL

THE ROYA

BIOLOGICAL

ROYA

THE:

PHILOSOPHICAL
TRANSACTIONS

 \overline{S}

Figure 2. (a) Fluorescence emission spectra of DanePy and its
nitroxide radical form DanePyO infiltrated into tobacco leaf
disks (b) Fluorescence emission spectrum of DanePy in Figure 2. *(a)* Fluorescence emission spectra of DanePy and
nitroxide radical form DanePyO infiltrated into tobacco le:
disks. *(b)* Fluorescence emission spectrum of DanePy in
tobacco leaves before and after 60 min photoi nitroxide radical form DanePyO infiltrated into tobacco leaf
disks. (b) Fluorescence emission spectrum of DanePy in
tobacco leaves before and after 60 min photoinhibition (PI)
by 1500 umol m⁻²s⁻¹ PAR at room temperatu disks. (*b*) Fluorescence emission spectrum of DanePy in
tobacco leaves before and after 60 min photoinhibition (PI)
by 1500 µmol m⁻²s⁻¹ PAR at room temperature. All spectra tobacco leaves before and after 60 min photoinhibition (PI)
by 1500 µmol m⁻²s⁻¹ PAR at room temperature. All spectra
were measured using $\lambda_{\text{exc}} = 345$ nm and are shown normalized
to the fluorescence emission maximum by 1500 μ mol m⁻²s⁻¹ PAR at room temperature. All spectivere measured using $\lambda_{\text{exc}} = 345 \text{ nm}$ and are shown normaliz
to the fluorescence emission maximum of DanePy in the
untreated leaf. Parameters used in the de were measured using $\lambda_{\text{exc}} = 345 \text{ nm}$ and are shown normalized
to the fluorescence emission maximum of DanePy in the
untreated leaf. Parameters used in the definition of relative
fluorescence quenching. $\Delta E/E$ are also to the fluorescence emission maximum of DanePy in the untreated leaf. Parameters used in the definition of relative fluorescence quenching, $\Delta F/F$ are also shown in (*b*).

more
secolve oxygen upon illumination. When leaves were
exposed to photoiphibition at room temperature, there evolve oxygen upon illumination. When leaves were
exposed to photoinhibition at room temperature, there
was no marked decrease in the amount of Dl protein thus evolve oxygen upon illumination. When leaves were
exposed to photoinhibition at room temperature, there
was no marked decrease in the amount of D1 protein, thus
the accumulation of inactive centres corresponded to the exposed to photoinhibition at room temperature, there
was no marked decrease in the amount of DI protein, thus
the accumulation of inactive centres corresponded to the
loss of PS II activity was no marked decrea
the accumulation of in
loss of PS II activity.
Figure 3, shows the Execumulation of inactive centres corresponded to the

Second PS II activity.

Figure 3 shows the comparison of the amount of

Rective PS II centres and singlet over production in

loss of PS II activity.

Figure 3 shows the comparison of the amount of

inactive PS II centres and singlet oxygen production in

the case of four different oxidative stress conditions: Figure 3 shows the comparison of the amount of inactive PS II centres and singlet oxygen production in the case of four different oxidative stress conditions:
mhotoinhibition IIVR irradiation low temperature and inactive PS II centres and singlet oxygen production in
the case of four different oxidative stress conditions:
photoinhibition, UVB irradiation, low temperature and
treatment with paraguat. Figure $3a$ shows that singlet the case of four different oxidative stress conditions:
photoinhibition, UVB irradiation, low temperature and
treatment with paraquat. Figure 3*a* shows that singlet
oxygen production during photoinhibition *in nine* is photoinhibition, UVB irradiation, low temperature and
treatment with paraquat. Figure 3a shows that singlet
oxygen production during photoinhibition *in vivo* is
proportional to the amount of inactive PS II centres treatment with paraquat. Figure $3a$ shows that singlet
oxygen production during photoinhibition *in vivo* is
proportional to the amount of inactive PS II centres
(Hideg et al. 1998a) This result supports the model postuoxygen production during photoinhibition *in vivo* is
proportional to the amount of inactive PS II centres
(Hideg *et al.* 1998*a*). This result supports the model postu-(Hideg *et al.* 1998*a*). This result supports the model postu-
Phil. Trans. R. Soc. Lond. B (2000)

oxygen. Similarly to photoinhibition by PAR, the other lating functionally inactive centres as sources of singlet
oxygen. Similarly to photoinhibition by PAR, the other
type of light stress, irradiation with UVB, also resulted in
the accumulation of inactive PS II centres, alt oxygen. Similarly to photoinhibition by PAR, the other
type of light stress, irradiation with UVB, also resulted in
the accumulation of inactive PS II centres, although to a
smaller extent. Contrary to photoinhibition, the type of light stress, irradiation with UVB, also resulted in
the accumulation of inactive PS II centres, although to a
smaller extent. Contrary to photoinhibition, there was no
marked singlet overen production until the la the accumulation of inactive PS II centres, although to a smaller extent. Contrary to photoinhibition, there was no marked singlet oxygen production until the late phase of smaller extent. Contrary to photoinhibition, there was no
marked singlet oxygen production until the late phase of
UVB treatment (figure 3*b*). Chilling at 5 °C resulted in
hoth the accumulation of inactive PS II and singl marked singlet oxygen production until the late phase of UVB treatment (figure $3b$). Chilling at 5° C resulted in both the accumulation of inactive PS II and singlet oxygen production, although to a smaller extent th UVB treatment (figure $3b$). Chilling at 5° C resulted in both the accumulation of inactive PS II and singlet oxygen production, although to a smaller extent than photoinhibition (figure $3c$) while neither inactive P both the accumulation of inactive PS II and singlet oxygen production, although to a smaller extent than photoinhibition (figure $3c$), while neither inactive PS II accumulation, nor singlet oxygen production was characoxygen production, although to a smaller extent than
photoinhibition (figure $3c$), while neither inactive PS II
accumulation, nor singlet oxygen production was charac-
teristic of treatment by paraguat (figure $3d$) photoinhibition (figure 3*c*), while neither ina
accumulation, nor singlet oxygen production v
teristic of treatment by paraquat (figure 3*d*). teristic of treatment by paraquat (figure 3*d*).
4. DISCUSSION

Photoinhibition by excess PAR may deactivate photo-**4. DISCUSSION**
Photoinhibition by excess PAR may deactivate photo-
synthetic electron transport and cause oxidative damage
in plants (Prasil et al. 1992: A ro et al. 1993: K rause 1994) Photoinhibition by excess PAR may deactivate photosynthetic electron transport and cause oxidative damage
in plants (Prasil *et al.* 1992; Aro *et al.* 1993; Krause 1994).
The amount of PAR that is canable of initiating ph synthetic electron transport and cause oxidative damage
in plants (Prasil *et al.* 1992; Aro *et al.* 1993; Krause 1994).
The amount of PAR that is capable of initiating photo-
inhibition depends on the efficiency of the e in plants (Prasil *et al.* 1992; Aro *et al.* 1993; Krause 1994). The amount of PAR that is capable of initiating photo-inhibition depends on the efficiency of the energy dissipa-The amount of PAR that is capable of initiating photo-
inhibition depends on the efficiency of the energy dissipa-
tion mechanisms and the capacity of the antioxidant
defence system (for reviews see Demmin-Adams $\&$ inhibition depends on the efficiency of the energy dissipa-
tion mechanisms and the capacity of the antioxidant
defence system (for reviews, see Demmig-Adams &
Adams 1992: Asada 1994) The primary site of damage is tion mechanisms and the capacity of the antioxidant
defence system (for reviews, see Demmig-Adams &
Adams 1992; Asada 1994). The primary site of damage is
in PS II where excess PAR generates stable reduced defence system (for reviews, see Demmig-Adams &
Adams 1992; Asada 1994). The primary site of damage is
in PS II, where excess PAR generates stable reduced
abnormal quinone states that lead to the production of Adams 1992; Asada 1994). The primary site of damage is
in PS II, where excess PAR generates stable reduced
abnormal quinone states that lead to the production of
singlet oxygen via chlorophyll triplet states (Vass & in PS II, where excess PAR generates stable reduced
abnormal quinone states that lead to the production of
singlet oxygen via chlorophyll triplet states (Vass &
Styring 1992–1993). In agreement with the established abnormal quinone states that lead to the production of singlet oxygen via chlorophyll triplet states (Vass & Styring 1992, 1993). In agreement with the established singlet oxygen via chlorophyll triplet states (Vass & Styring 1992, 1993). In agreement with the established model of acceptor-side-induced photoinhibition, we have recently shown that singlet oxygen is produced under Styring 1992, 1993). In agreement with the established model of acceptor-side-induced photoinhibition, we have recently shown that singlet oxygen is produced under high light intensities in vine in inactive PS II reactio model of acceptor-side-induced photoinhibition, we have
recently shown that singlet oxygen is produced under
high light intensities *in vivo*, in inactive PS II reaction
centres (Hidea *et al.* 1998*a*). Because stress con recently shown that singlet oxygen is produced under high light intensities *in vivo*, in inactive PS II reaction centres (Hideg *et al.* 1998*a*). Because stress conditions in high light intensities *in vivo*, in inactive PS II reaction
centres (Hideg *et al.* 1998*a*). Because stress conditions in
the field usually combine, it is feasible to ask whether the
impairment of PS II by another stres centres (Hideg *et al.* 1998*a*). Because stress conditions in
the field usually combine, it is feasible to ask whether the
impairment of PS II by another stress could decrease the
threshold intensity above which PAR is i the field usually combine, it is feasible to ask whether the
impairment of PS II by another stress could decrease the
threshold intensity above which PAR is in excess for
photosynthesis and thus generate singlet oxygen-med impairment of PS II by another stress could decrease the threshold intensity above which PAR is in excess for photosynthesis and thus generate singlet oxygen-mediated photoinhibition. In the experiments demonstrated above, photosynthesis and thus generate singlet oxygen-mediated photosynthesis and thus generate singlet oxygen-mediated
photoinhibition. In the experiments demonstrated above,
three different types of oxidative stress were combined
with PAR and their ability to promote singlet oxygen photoinhibition. In the experiments demonstrated above,
three different types of oxidative stress were combined
with PAR and their ability to promote singlet oxygen
production was examined. In order to perform comparathree different types of oxidative stress were combined
with PAR and their ability to promote singlet oxygen
production was examined. In order to perform compara-
tive experiments conditions were set in a way that with PAR and their ability to promote singlet oxygen
production was examined. In order to perform compara-
tive experiments, conditions were set in a way that
ensured that PS II electron transport activity, was production was examined. In order to perform comparative experiments, conditions were set in a way that ensured that PS II electron transport activity was tive experiments, conditions were set in a way that
ensured that PS II electron transport activity was
damaged to the same extent during the same periods of
time by the various stress conditions ensured that PS II electron trans
damaged to the same extent during the
time by the various stress conditions.
IIVR irradiation affects plants at ma maged to the same extent during the same periods of
the by the various stress conditions.
UVB irradiation affects plants at many levels causing a
mplex oxidative stress (for review see Vass 1997). In the

time by the various stress conditions.
UVB irradiation affects plants at many levels causing a
complex oxidative stress (for review, see Vass 1997). In the
thulakoid membrane, the primary target of UVB is at the UVB irradiation affects plants at many levels causing a
complex oxidative stress (for review, see Vass 1997). In the
thylakoid membrane, the primary target of UVB is at the
Mn cluster of the oxygen-evolving system (Renger complex oxidative stress (for review, see Vass 1997). In the thylakoid membrane, the primary target of UVB is at the Mn cluster of the oxygen-evolving system (Renger *et al.*) 1989: Vass *et al.* 1999), although the quinon thylakoid membrane, the primary target of UVB is at the Mn cluster of the oxygen-evolving system (Renger *et al.* 1989; Vass *et al.* 1999), although the quinone acceptors of PS II are also affected (Greenberg et al. 1989; Vass et al. 1989; Vass *et al.* 1999), although the quinone acceptors of PS II are also affected (Greenberg *et al.* 1989; Vass *et al.* 1996). As we showed earlier, in isolated thylakoid membranes this PS II impairment by $IUXB$ does PS II are also affected (Greenberg *et al.* 1989; Vass *et al.* 1996). As we showed earlier, in isolated thylakoid membranes this PS II impairment by UVB does not result in marked singlet oxigen production (Hideg $\&$ Vas 1996). As we showed earlier, in isolated thylakoid
membranes this PS II impairment by UVB does not result
in marked singlet oxygen production (Hideg & Vass 1996).
Our present data confirm this observation in leaves Moremembranes this PS II impairment by UVB does not result
in marked singlet oxygen production (Hideg & Vass 1996).
Our present data confirm this observation in leaves. Morein marked singlet oxygen production (Hideg & Vass 1996).
Our present data confirm this observation in leaves. Moreover, we found that a combination of UVB irradiation and
PAR-did not promote singlet oxygen production. Sing Our present data confirm this observation in leaves. More-
over, we found that a combination of UVB irradiation and
PAR did not promote singlet oxygen production. Singlet
oxygen appeared only in severely damaged leaves, af over, we found that a combination of UVB irradiation and
PAR did not promote singlet oxygen production. Singlet
oxygen appeared only in severely damaged leaves, after
long irradiation, probably accompanying membrane linid PAR did not promote singlet oxygen production. Singlet oxygen appeared only in severely damaged leaves, after long irradiation, probably accompanying membrane lipid peroxidation. There is no marked singlet oxygen producoxygen appeared only in severely damaged leaves, after
long irradiation, probably accompanying membrane lipid
peroxidation. There is no marked singlet oxygen produc-
tion at the earlier phase of damage, although inactive r long irradiation, probably accompanying membrane lipid peroxidation. There is no marked singlet oxygen production at the earlier phase of damage, although inactive reaction centres accumulated (figure 3*b*). The absence of singlet oxygen production supports the recent model tion at the earlier phase of damage, although inactive reaction centres accumulated (figure 3*b*). The absence of singlet oxygen production supports the recent model based on studies of cyanobacteria in which the initial tion centres accumulated (figure $3b$). The absence of singlet oxygen production supports the recent model based on studies of cyanobacteria in which the initial site of PS II inactivation by IWR light in vira is not at singlet oxygen production supports the recent model
based on studies of cyanobacteria in which the initial
site of PS II inactivation by UVB light *in vivo* is not at

BIOLOGICAL

THE ROYAI

PHILOSOPHICAL
TRANSACTIONS

BIOLOGICAL

OYAI

 \mathbf{R}

THE

PHILOSOPHICAL
TRANSACTIONS

Figure 3. Comparison of singlet oxygen production and the amount of inactive PS II reaction centres in leaves under various
stress conditions. The latter are defined as centres with intact protein structure but functional Figure 3. Comparison of singlet oxygen production and the amount of inactive PS II reaction centres in leaves under
stress conditions. The latter are defined as centres with intact protein structure but functionally impai stress conditions. The latter are defined as centres with intact protein structure but functionally impaired. Singlet oxygen
production was measured as quenching of DanePy fluorescence (see § 2 for details). Leaves were e production was measured as quenching of DanePy fluorescence (see § 2 for details). Leaves were exposed to (*a*) photo-
inhibition by 1500 µmol m⁻² s⁻¹ PAR at room temperature, (*b*) irradiation with 25 µmol m⁻² s⁻¹ inhibition by 1500 µmol m⁻² s⁻¹ PAR at roon
100 µmol m⁻² s⁻¹ PAR at room temperature,
temperature under 100 µmol m⁻² s⁻¹ PAR.

temperature under $100 \mu \text{mol m}^{-2} \text{s}^{-1}$ PAR.
the quinone acceptors (Vass *et al.* 1999). Damage by the quinone acceptors (Vass *et al.* 1999). Damage by UVB may be facilitated by PAR in centres with inacti-
vated oxygen-evolving complexes according to the the quinone acceptors (Vass *et al.* 1999). Damage by UVB may be facilitated by PAR in centres with inactivated oxygen-evolving complexes according to the mechanism of donor-side-induced photoinhibition but UVB may be facilitated by PAR in centres with inactivated oxygen-evolving complexes according to the mechanism of donor-side-induced photoinhibition, but this hypothesis needs further testing vated oxygen-evolving complexes a
mechanism of donor-side-induced ph
this hypothesis needs further testing.
Chilling results in an oxygen-an mechanism of donor-side-induced photoinhibition, but

Uthis hypothesis needs further testing.

Chilling results in an oxygen- and light-dependent

this hypothesis needs further testing.
Chilling results in an oxygen- and light-dependent
inactivation of photosynthesis. It has been reported that
the extent of PS II inhibition by low temperature depends Chilling results in an oxygen- and light-dependent
inactivation of photosynthesis. It has been reported that
the extent of PS II inhibition by low temperature depends
on the photon flux density during chilling and no inhib inactivation of photosynthesis. It has been reported that
the extent of PS II inhibition by low temperature depends
on the photon flux density during chilling and no inhibi-
tion was observed in the dark (Bowles *et al.* the extent of PS II inhibition by low temperature depends
on the photon flux density during chilling and no inhibi-
tion was observed in the dark (Bowles *et al.* 1983). In this
way, chilling may be regarded as low-tempera on the photon flux density during chilling and no inhibition was observed in the dark (Bowles *et al.* 1983). In this way, chilling may be regarded as low-temperature-
enhanced photoinhibition (Hetherington *et al.* 1989) tion was observed in the dark (Bowles *et al.* 1983). In this way, chilling may be regarded as low-temperature-
enhanced photoinhibition (Hetherington *et al.* 1989). Our
results show that although inactive PS II reaction way, chilling may be regarded as low-temperature-
enhanced photoinhibition (Hetherington *et al.* 1989). Our
results show that although inactive PS II reaction centres
accumulated during illumination at low temperature and enhanced photoinhibition (Hetherington *et al.* 1989). Our results show that although inactive PS II reaction centres accumulated during illumination at low temperature and singlet oxygen was produced both occurred to a sm results show that although inactive PS II reaction centres
accumulated during illumination at low temperature and
singlet oxygen was produced, both occurred to a smaller
extent than during PAR at room temperature (figure 3 accumulated during illumination at low temperature and singlet oxygen was produced, both occurred to a smaller extent than during PAR at room temperature (figure $3c$). singlet oxygen was produced, both occurred to a smaller
extent than during PAR at room temperature (figure $3c$).
This suggests that although chilling can be partially
regarded as causing enhancement of photoinhibition by extent than during PAR at room temperature (figure $3c$).
This suggests that although chilling can be partially
regarded as causing enhancement of photoinhibition by *Phil. Trans. R. Soc. Lond.* B (2000) *Phil. Trans. R. Soc. Lond.* B (2000)

low temperature, this is not the only mechanism of PS II damage by low temperature. Observation of hydroxyl (How temperature, this is not the only mechanism of PS II
damage by low temperature. Observation of hydroxyl
(Hideg & Björn 1996) and superoxide (Hodgson &
Raison 1991) radical production in chilling exposed damage by low temperature. Observation of hydroxyl
(Hideg & Björn 1996) and superoxide (Hodgson &
Raison 1991) radical production in chilling exposed
leaves as well as the retarding effect of various added (Hideg & Björn 1996) and superoxide (Hodgson & Raison 1991) radical production in chilling exposed leaves, as well as the retarding effect of various added antioxidants (Wise & Navlor 1995) supports the role of Raison 1991) radical production in chilling exposed
leaves, as well as the retarding effect of various added
antioxidants (Wise & Naylor 1995), supports the role of
alternative ROS-mediated damage leaves, as well as the retarding effect of various added
antioxidants (Wise & Naylor 1995), supports the role of
alternative ROS-mediated damage.
Contrary to the above three stress conditions, oxidative tioxidants (Wise & Naylor 1995), supports the role of
ternative ROS-mediated damage.
Contrary to the above three stress conditions, oxidative
mage by paraquat originates outside PS II. Paraquat is

damage by paraquat originates outside PS II. Paraquat is Contrary to the above three stress conditions, oxidative
damage by paraquat originates outside PS II. Paraquat is
univalently reduced by PS I to its cation radical, which
rapidly donates electrons to overen producing super damage by paraquat originates outside PS II. Paraquat is
univalently reduced by PS I to its cation radical, which
rapidly donates electrons to oxygen, producing superoxide
radicals (Babbs et al. 1989). Such superoxide prod univalently reduced by PS I to its cation radical, which
rapidly donates electrons to oxygen, producing superoxide
radicals (Babbs *et al.* 1989). Such superoxide production at
PS I exceeds the antioxidant ability of the s rapidly donates electrons to oxygen, producing superoxide radicals (Babbs $et al.$ 1989). Such superoxide production at PS I exceeds the antioxidant ability of the superoxide radicals (Babbs *et al.* 1989). Such superoxide production at PS I exceeds the antioxidant ability of the superoxide dismutase-ascorbate-peroxidase system (for a review, see Δ sada 1994) and excess superoxide and other PS I exceeds the antioxidant ability of the superoxide
dismutase–ascorbate–peroxidase system (for a review, see
Asada 1994) and excess superoxide and other ROS propa-
gate oxidative damage to other membrane components dismutase–ascorbate–peroxidase system (for a review, see
Asada 1994) and excess superoxide and other ROS propagate oxidative damage to other membrane components.
In this way, PS II is also affected and Dl is degraded Asada 1994) and excess superoxide and other ROS propagate oxidative damage to other membrane components.
In this way, PS II is also affected and D1 is degraded (Hiden et al. 1998b) but there is practically no inactive gate oxidative damage to other membrane components.
In this way, PS II is also affected and Dl is degraded
(Hideg *et al.* 1998*b*), but there is practically no inactive

PS II accumulation (figure 3d). Accordingly, singlet oxygen production was also low (figure 3d). Although PS II accumulation (figure $3d$). Accordingly, singlet oxygen production was also low (figure $3d$). Although PAR is necessary for the action of paraquat, damage caused by this internal radical source (the paraquat oxygen production was also low (figure 3d). Although
PAR is necessary for the action of paraquat, damage
caused by this internal radical source (the paraquat
radical) results in almost simultaneous electron transport PAR is necessary for the action of paraquat, damage
caused by this internal radical source (the paraquat
radical) results in almost simultaneous electron transport
inactivation and DI decradation. In this way, functional caused by this internal radical source (the paraquat radical) results in almost simultaneous electron transport inactivation and D1 degradation. In this way, functional PS II impairment is probably the result of general (D inactivation and D1 degradation. In this way, functional inactivation and D1 degradation. In this way, functional
PS II impairment is probably the result of general (D1
and other) protein and membrane degradation, and
acceptor-side-induced photoiphibition does not occur PS II impairment is probably the result of general (1 and other) protein and membrane degradation, and acceptor-side-induced photoinhibition does not occur.
It is important to note that inactive PS II reaction d other) protein and membrane degradation, and
ceptor-side-induced photoinhibition does not occur.
It is important to note that inactive PS II reaction
patres are not the only potential sources of singlet over a

BIOLOGICAL
SCIENCES

THE ROYAI E

PHILOSOPHICAL
TRANSACTIONS $\overline{5}$

> **BIOLOGICA** CIENCES

ROYA

THE

ш

 \mathbf{I}

acceptor-side-induced photoinhibition does not occur.
It is important to note that inactive PS II reaction
centres are not the only potential sources of singlet oxygen.
Stress-induced membrane disinteration may lead to fre It is important to note that inactive PS II reaction
centres are not the only potential sources of singlet oxygen.
Stress-induced membrane disintegration may lead to free
chlorophyll formation, which readily reacts with ox centres are not the only potential sources of singlet oxygen.
Stress-induced membrane disintegration may lead to free
chlorophyll formation, which readily reacts with oxygen to
form singlet oxygen (Halliwell 1982). Prolong Stress-induced membrane disintegration may lead to free
chlorophyll formation, which readily reacts with oxygen to
form singlet oxygen (Halliwell 1982). Prolonged exposure
of isolated chloroplasts to photo-oxidative stress chlorophyll formation, which readily reacts with oxygen to
form singlet oxygen (Halliwell 1982). Prolonged exposure
of isolated chloroplasts to photo-oxidative stress caused
linid peroxidation, which was accompanied by sin form singlet oxygen (Halliwell 1982). Prolonged exposure
of isolated chloroplasts to photo-oxidative stress caused
lipid peroxidation, which was accompanied by singlet
oxygen production (Takahama & Nishimura 1975). The of isolated chloroplasts to photo-oxidative stress caused
lipid peroxidation, which was accompanied by singlet
oxygen production (Takahama & Nishimura 1975). The
singlet oxygen production that we observed after prolonged lipid peroxidation, which was accompanied by singlet
oxygen production (Takahama & Nishimura 1975). The
singlet oxygen production that we observed after prolonged
exposure to UVB (for an array of the stress (for the 3d) oxygen production (Takahama & Nishimura 1975). The
singlet oxygen production that we observed after prolonged
exposure to UVB (figure 3*b*) or paraquat stress (figure 3*d*),
and found unrelated to the accumulation of inact singlet oxygen production that we observed after prolonged
exposure to UVB (figure $3b$) or paraquat stress (figure $3d$),
and found unrelated to the accumulation of inactive PS II centres, may originate from such reactions.

5. CONCLUSIONS

Besides being the driving force of photoinhibition, PAR **is. CONCLUSIONS**
Is essential for damage by low temperature and by para-
quat and it may modify the effect of UVB light. Although Besides being the driving force of photoinhibition, PAR
is essential for damage by low temperature and by para-
quat and it may modify the effect of UVB light. Although
experimental conditions for the four studied stresses is essential for damage by low temperature and by para-
quat and it may modify the effect of UVB light. Although
experimental conditions for the four studied stresses were
set to result in the same time-course of PS II ina quat and it may modify the effect of UVB light. Although
experimental conditions for the four studied stresses were
set to result in the same time-course of PS II inactivation,
damage clearly followed different pathways. I experimental conditions for the four studied stresses were
set to result in the same time-course of PS II inactivation,
damage clearly followed different pathways. Inactive PS II
reaction, centres, accumulated, during, pho react to result in the same time-course of PS II inactivation,
damage clearly followed different pathways. Inactive PS II
reaction centres accumulated during photoinhibition,
IIVR irradiation and chilling, while there was damage clearly followed different pathways. Inactive PS II
reaction centres accumulated during photoinhibition,
UVB irradiation and chilling, while there was little accu-
mulation in paraquat stress. Singlet oxygen product reaction centres accumulated during photoinhibition,
UVB irradiation and chilling, while there was little accumulation in paraquat stress. Singlet oxygen production
correlated well with the growth in the amount of inactive UVB irradiation and chilling, while there was little accumulation in paraquat stress. Singlet oxygen production
correlated well with the growth in the amount of inactive
PS II reaction centres during photoinhibition and al mulation in paraquat stress. Singlet oxygen production
correlated well with the growth in the amount of inactive
PS II reaction centres during photoinhibition and also to
some extent in chilling. There was no such correlat correlated well with the growth in the amount of inactive PS II reaction centres during photoinhibition and also to some extent in chilling. There was no such correlation in PS II reaction centres during photoinhibition and also to some extent in chilling. There was no such correlation in leaves exposed to UVB irradiation and PAR. Our results show that singlet oxygen production in inactivated some extent in chilling. There was no such correlation in
leaves exposed to UVB irradiation and PAR. Our results
show that singlet oxygen production in inactivated PS II
reaction centres is a unique characteristic of photo leaves exposed to UVB irradiation and PAR. Our results
show that singlet oxygen production in inactivated PS II
reaction centres is a unique characteristic of photo-
inhibition by excess PAR. We found that although PAR show that singlet oxygen production in inactivated PS II
reaction centres is a unique characteristic of photo-
inhibition by excess PAR. We found that, although PAR
may make chilling stress more severe by promoting reaction centres is a unique characteristic of photo-
inhibition by excess PAR. We found that, although PAR
may make chilling stress more severe by promoting
photoinhibition, this was not the exclusive pathway of inhibition by excess PAR. We found that, although PAR
may make chilling stress more severe by promoting
photoinhibition, this was not the exclusive pathway of
oxidative damage at low temperature. Moreover, pether may make chilling stress more severe by promoting
photoinhibition, this was not the exclusive pathway of
oxidative damage at low temperature. Moreover, neither
the accumulation of inactive PS II reaction centres by photoinhibition, this was not the exclusive pathway of oxidative damage at low temperature. Moreover, neither the accumulation of inactive PS II reaction centres by IIVR por photo-oxidative damage of PS II by paraquation oxidative damage at low temperature. Moreover, neither
the accumulation of inactive PS II reaction centres by
UVB, nor photo-oxidative damage of PS II by paraquat
was able to produce the special oxidizing conditions the accumulation of inactive PS II reaction centres by
UVB, nor photo-oxidative damage of PS II by paraquat
was able to produce the special oxidizing conditions
characteristic of accentor-side-induced photoinbibition UVB, nor photo-oxidative damage of PS II by paraqua
was able to produce the special oxidizing condition
characteristic of acceptor-side-induced photoinhibition.

characteristic of acceptor-side-induced photoinhibition.
This work was supported by the Hungarian National Research
Foundation OTK A (T-030232) This work was supported by the
Foundation OTKA (T-030232).

REFERENCES

- Aro, E.-M., Virgin, I. & Andersson, B. 1993 Photoinhibition of photosystem II. Inactivation, B. 1993 Photoinhibition of
photosystem II. Inactivation, protein damage and turnover.
Biochim Biobhys. Acta 1143 113–134. *Biochim. Bioghys. I. & Andersson, B*
photosystem II. Inactivation, protein
Biochim. Biophys. Acta 1143, 113–134.
2d3 K. 1994 Production and action photosystem II. Inactivation, protein damage and turnover.
 Biochim. Biophys. Acta **1143**, 113–134.

Asada, K. 1994 Production and action of active oxygen species

in photosynthetic tissues. In *Causes of photosyidative*
- *Biochim. Biophys. Acta* **1143**, 113–134.
ada, K. 1994 Production and action of active oxygen species
in photosynthetic tissues. In *Causes of photooxidative stress and*
ameliaration of defence systems in plants (ed. Cb. ada, K. 1994 Production and action of active oxygen species
in photosynthetic tissues. In *Causes of photooxidative stress and*
amelioration of defence systems in plants (ed. Ch. F. Foyer & P. M.
Mullineaux) pp. 77–104 in photosynthetic tissues. In *Causes of photooxidative stress and amelioration of defence systems in plants* (ed. Ch. F. Foyer & P. M. Mullineaux), pp. 77–104. Boca Raton, FL: CRC Press. amelioration of defence systems in plants (ed. Ch. F. Foyer & P. M.
Mullineaux), pp. 77–104. Boca Raton, FL: CRC Press.
Babbs, C. F., Pham, J. A. & Coolbaugh, R. C. 1989 [Lethal](http://matilde.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0032-0889^28^2990L.1267[aid=536769])
hydroxyl radical production in paraquat-treat
- Mullineaux), pp. 77-104. Boca Raton, FL: CRC Press.
bbs, C. F., Pham, J. A. & Coolbaugh, R. C. 1989 Lethal
[hydroxyl radical prod](http://matilde.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0032-0889^28^2990L.1267[aid=536769])uction in paraquat-treated plants. *Plant*
Physial **90** 1967–1970 **bbs, C. F., Pham, J. A
hydroxyl radical productions**
Physiol. **90**, 1267–1270.
- Barber, J. & Andersson, B. 1992 Too much of a good thing can
be bad for photosynthesis *Trends Biochem Sci* 17 61–66 rber, J. & Andersson, B. 1992 Too much of a good thing
be bad for photosynthesis. *Trends Biochem. Sci.* **17**, 61–66.
webes. S. B. Berry, J. A. & Biörkman, O. 1983. Intera
- bebad for photosynthesis. *Trends Biochem. Sci.* **17**, 61–66.
Bowles, S. B., Berry, J. A. & Björkman, O. 1983 Interaction be bad for photosynthesis. *Trends Biochem. Sci.* **17**, 61–66.
wles, S. B., Berry, J. A. & Björkman, O. 1983 Interaction
between light and chilling temperature on the inhibition of
photosynthesis in chilling-sensitive plan wles, S. B., Berry, J. A. & Björkman, O. 1983 Interaction between light and chilling temperature on the inhibition of photosynthesis in chilling-sensitive plants. *Plant Cell Physiol*. **6**, 117–123. photosynthesis in chilling-sensitive plants. Plant Cell Physiol. 6 , $117-123$
- 117–123.
emmig-Adams, B. & Adams III, W. W. 1992 Photoprotection
and other responses of plants to high light stress. *[A. Rev. Plant](http://matilde.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1040-2519^28^2943L.599[aid=536772])*
Physiol, Plant Mol. Biol, **43**, 599–696. *Physiol. Plannes, B. & Adams III, W. V*
and other responses of plants to high
Physiol. Plant Mol. Biol. 43, 599–626.
Physiol. Plannes B. M. Gaba V. Canaani andother responses of plants to high light stress. A. Rev. Plant
Physiol. Plant Mol. Biol. 43, 599-626.
Greenberg, B. M., Gaba, V., Canaani, O., Malkin, S., Mattoo,
- Physiol. Plant Mol. Biol. 43, 599–626.

reenberg, B. M., Gaba, V., Canaani, O., Malkin, S., Mattoo,

A. K. & Edelman, M. 1989 Separate photosensitizers

mediate degradation of the ³⁹ kDa photosystem II reaction eenberg, B. M., Gaba, V., Canaani, O., Malkin, S., Mattoo, A. K. & Edelman, M. 1989 Separate photosensitizers
mediate degradation of the 32-kDa photosystem II re[action](http://matilde.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0027-8424^28^2986L.6617[aid=536773,csa=0027-8424^26vol=86^26iss=17^26firstpage=6617,nlm=2671998])
center protein in the visible and IIV spectral regions A. K. & Edelman, M. 1989 Separate photosensitizers
mediate degradation of the 32-kDa photosystem II reaction
center protein in the visible and UV spectral regions. *Proc.*
Natl Acad Sci USA 86 6617–6620 mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions. *Proc. Natl Acad. Sci. USA* **86**, 6617–6620. centerprotein in the visible and UV spectral regions. *Proc.*
 Natl Acad. Sci. USA **86**, 6617–6620.
 **Halliwell, B. 1982 The toxic effects of oxygen on plant tissues. In
** *Suberovide dismutase* **(ed. J. W. Oberley), pp.**
- *Natl Acad. Sci. USA* **86**, 6617–6620.
alliwell, B. 1982 The toxic effects of oxygen on plant tissues. In
Superoxide dismutase (ed. L. W. Oberley), pp. 82–123. Boca
Raton EL: CRC Press alliwell, B. 1982 The toxic

Superoxide dismutase (ed.

Raton, FL: CRC Press.

endry G. A. F. 1994 O Superoxide dismutase (ed. L. W. Oberley), pp. 82–123. Boca
Raton, FL: CRC Press.
Hendry, G. A. F. 1994 Oxygen and environmental stress in
plants: an evolutionary context. Pres. R. Sec. Edin. B.102
- Raton, FL: CRC Press.
endry, G. A. F. 1994 Oxygen and environmental stress in
plants: an evolutionary context. *Proc. R. Soc. Edin.* B**102**,
155–165. plants: an evolutionary context. Proc. R. Soc. Edin. B102,
155–165.
Hetherington, S. E., He, J. & Smilie, R. M. 1989
Photoiphibition at low temperature in chilling sensitive and
- 155–165.
etherington, S. E., He, J. & Smilie, R. M. 1989
Photoinhibition at low temperature in chilling sensitive and
resistant plants *Plant Physiol* **90** 1609–1615. Photoinhibition at low temperature in chilling sensitive and resistant plants. *Plant Physiol*. **90**, 1609–1615.
- Hideg, É. 1997 Free radical production in photosynthesis under
stress conditions. In *Handbook of photosynthesis* (ed. resistant plants. *Plant Physiol*. **90**, 1609–1615.
ideg, É. 1997 Free radical production in photosynthesis under
stress conditions. In *Handbook of photosynthesis* (ed.
M. Pessarakli) pp. 911–930 New York: Marcel Dekker. ideg, É. 1997 Free radical production in photosynthesis ustress conditions. In *Handbook of photosynthesis*
M. Pessarakli), pp. 911–930. New York: Marcel Dekker.
Ideg, É. & Björn J. O. 1996 Ultraweak light emission stress conditions. In *Handbook of photosynthesis* (ed. M. Pessarakli), pp. 911–930. New York: Marcel Dekker.
Hideg, É. & Björn, L. O. 1996 Ultraweak light emission, free
radicals chilling and light sensitivity. Physiol. P
- M. Pessarakli), pp. 911–930. New York: Marcel Dekker.
ideg, É. & Björn, L. O. 1996 Ultraweak light emission, free
radicals, chilling and light sensitivity. *Physiol. Plants* **98**,
223–228. radicals, chilling and light sensitivity. Physiol. Plants 98,
223–228.
Hideg, É. & Vass, I. 1996 UV-B induced free radical production
in plant leaves and isolated thulakoid membranes. Plant Sci
- 223–228.
ideg, É. & Vass, I. 1996 UV-B induced free radical production
in plant leaves and isolated thylakoid membranes. *[Plant Sci.](http://matilde.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0168-9452^28^29115L.251[aid=536776,doi=10.1016/0168-9452^2896^2904364-6])*
115, 251–260. **115**, 251–260.
115, 251–260.
115, 251–260. inplant leaves and isolated thylakoid membranes. Plant Sci.
115, 251–260.
Hideg, É., Spetea, C. & Vass, I. 1994*a* Singlet oxygen produc-
- 115, 251–260.
ideg, É., Spetea, C. & Vass, I. 1994*a* Singlet oxygen production in thylakoid membranes during photoinhibition as
detected by EPR spectroscopy *Biochim Biobhys Acta* 1186 ideg, É., Spetea, C. & Vass, I. 1994*a* Singlet oxygen production in thylakoid membranes during photoinhibition as detected by EPR spectroscopy. *Biochim. Biophys. Acta* **1186**, 143–152. detected by EPR spectroscopy. *Biochim. Biophys. Acta* 1186, 143–152.
Hideg, É., Spetea, C. & Vass, I. 1994*b* Singlet oxygen produc-
tion in thylakoid membranes during photoiphibition as
- 143–152.
ideg, É., Spetea, C. & Vass, I. 1994b Singlet oxygen production in thylakoid membra[nes during photoinhibition](http://matilde.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0166-8595^28^2939L.191[aid=536689]) as
detected by EPR spectroscopy *Photosynth*, *Pec* **30**, 101–100 deg, É., Spetea, C. & Vass, I. 1994*b* Singlet oxygen prodution in thylakoid membranes during photoinhibition is
detected by EPR spectroscopy. *Photosynth. Res.* **39**, 191–199.
Ideg É. Kálai T. Hideg K. & Vass I. 1998*e* P tion in thylakoid membranes during photoinhibition as
detected by EPR spectroscopy *Photosynth. Res.* **39**, 191–199.
Hideg, É., Kálai, T., Hideg, K. & Vass, I. 1998*a* Photoinhibition
of photosynthesis in vira results in s
- detected by EPR spectroscopy. *Photosynth. Res.* **39**, 191–199.
ideg, É., Kálai, T., Hideg, K. & Vass, I. 1998*a* Photoinhibition
of photosynthesis *in vivo* results in singlet oxygen production.
Detection via pitrovide in ideg, É., Kálai, T., Hideg, K. & Vass, I. 1998a Photoinhibition
of photosynthesis *in vivo* results in singlet oxygen production.
Detection via nitroxide-induced fluorescence quenching in
broad bean leaves. *Righemistry* 3 of photosynthesis *in vivo* results in singlet oxygen production.
Detection via nitroxide-induced fluorescence quenching in broad bean leaves. *Biochemistry* **37**, 11405–11411.
- Hideg, É., Kálai, T., Hideg, K. & Vass, I. 1998b Detecting broad bean leaves. *Biochemistry* **37**, 11405–11411.
ideg, É., Kálai, T., Hideg, K. & Vass, I. 1998b Detecting
singlet oxygen production in leaves under stress. In
Photosynthesis: mechanisms and effects vol. III (ed. Gy. *Photosynthesis: mechanisms and e¡ects*, vol. III (ed. Gy. Garab), singlet oxygen production in leaves under str
 Photosynthesis: mechanisms and effects, vol. III (ed. Gy.

pp. 2139–2142. Dordrecht,The Netherlands: Kluwer.

idea É. Vass I. Kálai T. & Hidea K. 2000 Singlet Photosynthesis: mechanisms and effects, vol. III (ed. Gy. Garab),
pp. 2139–2142. Dordrecht, The Netherlands: Kluwer.
Hideg, É., Vass, I., Kálai, T. & Hideg, K. 2000 Singlet oxygen
detection with sterically hindered amine d
- pp. 2139–2142. Dordrecht, The Netherlands: Kluwer.
ideg, É., Vass, I., Kálai, T. & Hideg, K. 2000 Singlet oxygen
detection with sterically hindered amine derivatives in plants
under light stress *Meth Enzymol*, 319, 77–85. udeg, É., Vass, I., Kálai, T. & Hideg, K. 2000
detection with sterically hindered amine derivander light stress. *Meth. Enzymol.* **319**, 77–85.
irayama, S. H. Ueda, R. & Sugata, K. 199 detectionwith sterically hindered amine derivatives in plants
under light stress. Meth. Enzymol. 319, 77–85.
Hirayama, S. H., Ueda, R. & Sugata, K. 1996 Evaluati[on of](http://matilde.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/1071-5762^28^2925L.247[aid=536779,nlm=8889491])
active oxygen effect on photosynthesis of Chlarella vu
- under light stress. *Meth. Enzymol.* **319**, 77–85.
irayama, S. H., Ueda, R. & Sugata, K. 1996 Evaluation of
active oxygen effect on photosynthesis of *Chlorella vulgaris. Free*
Rad, Res. **25**, 247–254. *Rad. Res. 25, 247-254.*
 Rad. Res. 25, 247-254.
 Rad. Res. 25, 247-254. activeoxygen effect on photosynthesis of *Chlorella vulgaris. Free Rad. Res.* 25, 247–254.
Hodgson, R. A. & Raison, J. K. 1991 Superoxide production by the hydrodes during chilling and its implications in the suscept-
- Rad. Res. 25, 247–254.

odgson, R. A. & Raison, J. K. 1991 Superoxide production by

thylakoids during chilling and its implications in the suscept-

ibility of plants, to chilling-induced photoinhibition. *Planta* odgson, R. A. & Raison, J. K. 1991 Superoxide production by thylakoids during chilling and its implications in the susceptibility of plants to chilling-induced photoinhibition. *Planta*
183 222-228 thylakoids during chilling and its implications in the susceptibility of plants to chilling-induced photoinhibition. *Planta* **183**, 222-228. ibilityof plants to chilling-induced photoinhibition. *Planta*
183, 222–228.
Inze, D. & Van Montagu, M. 1995 Oxidative stress in plants.
Curr Ohin Bistechnel 6, 153–158.
- **183**, 222–228.
ze, D. & Van Montagu, M. 199*:***
***Curr. Opin. Biotechnol.* **6**, 153–158.
⁵¹9: T. Hideg. F. Vass. J. & Hi Inze,D. & Van Montagu, M. 1995 Oxidative stress in plants.

Curr. Opin. Biotechnol. 6, 153–158.

Kálai, T., Hideg, É., Vass, I. & Hideg, K. 1998 Double (fluor-escent and spin) sensors for detection of reactive ovvern
- Curr. Opin. Biotechnol. 6, 153–158.
álai, T., Hideg, É., Vass, I. & Hideg, K. 1998 Double (fluor-
escent and spin) sensors for detection of reactive oxygen
species in the thylakoid membrane. Free Rad, Biol. Med. 24. ilai, T., Hideg, É., Vass, I. & Hideg, K. 1998 Double (fluorescent and spin) sensors for detection of reactive oxygen species in the thylakoid membrane. *Free Rad. Biol. Med.* **24**, 649–652. species in the thylakoid membrane. Free Rad. Biol. Med. 24, 649–652.
Krause, G. H. 1994 The role of oxygen in photoinhibition of
- photosynthesis. In *Causes of photooxidative stress and amelioration* rause, G. H. 1994 The role of oxygen in photoinhibition of photosynthesis. In *Causes of photooxidative stress and amelioration* of *defence systems in plants* (ed. Ch. F. Foyer & P. M. Mullineaux) pp. 43–76 Boca Raton FI: photosynthesis. In *Causes of photooxidative stress and amel*
of defence systems in plants (ed. Ch. F. Foyer &
Mullineaux), pp. 43–76. Boca Raton, FL: CRC Press.

 $\overline{0}$

- II reaction centres. *Biochim. Biophys. Acta* 1143, 301–309.
ishra, N. P., Francke, C., Van Gorkom, H. J. & Demetrios,
D. F. 1994 Destructive role of singlet oxygen during aerobic
illumination of the photosystem H. core co D. F. 1994 Destructive role of singlet oxygen during aerobic illumination of the photosystem II core complex. *Biochim. Biophys. Acta* 1186, 81-90. *illumination* of the photosystem II core complex. Biochim.
- Okada, K., Ikeuchi, M., Yamamoto, N., Ono, T. & Miyao, M. Biophys. Acta 1186, 81–90.

sada, K., Ikeuchi, M., Yamamoto, N., Ono, T. & Miyao, M.

1996 Selective and specific cleavage of the D1 and D2 proteins

of photosystem H. by exposure to singlet oxygen: factors kada, K., Ikeuchi, M., Yamamoto, N., Ono, T. & Miyao, M.
1996 Selective and specific cleavage of the D1 and D2 proteins
of photosystem II by exposure to singlet oxygen: factors
responsible for the susceptibility to cleavag 1996 Selective and specific cleavage of the D1 and D2 proteins
of photosystem II by exposure to singlet oxygen: factors
responsible for the susceptibility to cleavage of proteins.
 $Rickim$ Rightlys 4cta 1274 73–79 of photosystem II by exposure the susceptibility
Biochim. Biophys. Acta **1274**, 73–79.
viles S. B. 1984 Photoinhibition of responsible for the susceptibility to cleavage of proteins.
Biochim. Biophys. Acta 1274, 73–79.
Powles, S. B. 1984 Photoinhibition of photosynthesis induced by
visible light A. Rev. Plant Physiol. 35, 15–44.
- Biochim. Biophys. Acta 1274, 73–79.
Powles, S. B. 1984 Photoinhibition of photosynthesis induced by visible light. A. Rev. Plant Physiol. 35, 15–44. Powles, S. B. 1984 Photoinhibition of photosynthesis induced by
visible light. A. Rev. Plant Physiol. **35**, 15–44.
Prasil, O., Adir, N. & Ohad, I. 1992 Dynamics of photosystem
I. mechanism of photoinhibition and recovery p
- visible light. A. Rev. Plant Physiol. 35, 15–44.
asil, O., Adir, N. & Ohad, I. 1992 Dynamics of photosystem
II: mechanism of photoinhibition and recovery process. In
Tehics in photosynthesis, the photosystems: structure, f asil, O., Adir, N. & Ohad, I. 1992 Dynamics of photosystem
II: mechanism of photosinhibition and recovery process. In
Topics in photosynthesis, the photosystems: structure, function and
malecular hideau vol. 11 (ed. I. B II: mechanism of photoinhibition and recovery process. In *Topics in photosynthesis, the photosystems: structure, function and molecular biology, vol. 11 (ed. J. Barber), pp. 220–250.
Amsterdam: Elsevier* Topics in photosynthesis,
molecular biology, vol.
Amsterdam: Elsevier.
nnger G. Völker M. E. molecular biology, vol. 11 (ed. J. Barber), pp. 220–250.
Amsterdam: Elsevier.
Renger, G., Völker M., Eckert, H. J., Fromme, R., Hohm-Veit,
- S. & Graber, P. 1989 On the mec[hanism of photosystem II](http://matilde.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0031-8655^28^2949L.97[aid=536785,csa=0031-8655^26vol=49^26iss=1^26firstpage=97]) enger, G., Völker M., Eckert, H. J., Fromme, R., Hohm-Veit, S. & Graber, P. 1989 On the mechanism of photosystem II deterioration by UV-B irradiance. *Photochem. Photobiol*. **49**, 97–105. deterioration by UV-B irradiance. *Photochem. Photobiol.* 49,
97–105.
Smirnoff, N. 1995 Antioxidant systems and plant response to the
environment. In *Environment, and plant metabolism* (ed
- 97–105.
nirnoff, N. 1995 Antioxidant systems and plant response to the
environment. In *Environment and plant metabolism* (ed.
N. Smirnoff) pp. 218–244. Oxford UK: BIOS Scientific nirnoff, N. 1995 Antioxidant systems and plant response to the
environment. In *Environment and plant metabolism* (ed.
N. Smirnoff), pp. 218–244. Oxford, UK: BIOS Scientific
Publishers Publishers. N. Smirnoff), pp. 218–244. Oxford, UK: BIOS Scientific
Publishers.
Takahama, U. & Nishimura, M. 1975 Formation of singlet
molecular oxygen in illuminated chloroplasts. Effects on
- Publishers.
kahama, U. & Nishimura, M. 1975 Formation of singlet
molecular oxygen in illuminated chloroplasts. Effects on
photoinactivation and linid peroxidation *Plant Cell Physiol* 16 kahama, U. & Nishimura, M. 1975 Formation of singlet molecular oxygen in illuminated chloroplasts. Effects on photoinactivation and lipid peroxidation. *Plant Cell Physiol*. **16**, 737–748. photoinactivation and lipid peroxidation. Plant Cell Physiol. 16,
737–748.
Telfer, A., Bishop, S. M., Philips, D. & Barber, J. 1994 Isolated
photosynthetic reaction, centre of photosystem II as a
- 737–748.
Ifer, A., Bishop, S. M., Philips, D. & Barber, J. 1994 Isolated
photosynthetic reaction centre of photosystem II as a
sensitizer for the formation of singlet oxygen: detection and lfer, A., Bishop, S. M., Philips, D. & Barber, J. 1994 Isolated
photosynthetic reaction centre of photosystem II as a
sensitizer for the formation of singlet oxygen: detection and
quantum vield determination using a chemic photosynthetic reaction centre of photosystem II as a sensitizer for the formation of singlet oxygen: detection and quantum yield determination using a chemical trapping technique $\frac{7}{10}$ $\frac{Ebd}{Gkm}$ $\frac{269}{13}$ $\frac{1$ sensitizer for the formation of singlet oxyger
quantum yield determination using a che
technique. *J. Biol. Chem.* **269**, 13 244–13 253.
ss. J. 1997. Adverse effect of UV-B light on the quantumyield determination using a chemical trapping
technique. \tilde{j} . *Biol. Chem.* **269**, 13 244-13 253.
Vass, I. 1997 Adverse effect of UV-B light on the structure and

function of the photosynthetic apparatus. In *Handbook of* function of the photosynthetic apparatus. In *Handbook of*
photosynthesis (ed. M. Pessarakli), pp. 931–949. New York:
Marcel Dekker function of the
photosynthesis (ed.
Marcel Dekker.
ss J & Styring photosynthesis (ed. M. Pessarakli), pp. 931–949. New York:
Marcel Dekker.
Vass, I. & Styring, S. 1992 Spectroscopic characterization of
triplet forming states in photosystem II. *Biochemistry*, 31

- Marcel Dekker.
ss, I. & Styring, S. 1992 Spectroscopic characterization of
triplet forming states in photosystem II. *Biochemistry* **31**,
5957–5963. triplet forming states in photosystem II. *Biochemistry* 31, 5957–5963.
Vass, I. & Styring, S. 1993 Characterization of chlorophyll
triplet promoting states in photosystem II sequentially
- triplet promotions.
1993 Vass, I. & Styring, S. 1993 Characterization of chlorophyll induced during photoinhibition. *Biochemistry* **32**, 3334–3341.
 Since and Since And Since triplet promoting states in photosystem II sequentially
induced during photoinhibition. *Biochemistry* **32**, 3334–334l.
Vass, I., Styring, S., Hundal, T., Koivuniemi, A., Aro, E.-M. &
Andersson B. 1999. The reversible and
- induced during photoinhibition. *Biochemistry* **32**, 3334–334l. Vass, I., Styring, S., Hundal, T., Koivuniemi, A., Aro, E.-M. & Andersson, B. 1992 The reversible and irreversible interss, I., Styring, S., Hundal, T., Koivuniemi, A., Aro, E.-M. &
Andersson, B. 1992 The reversible and irreversible inter-
mediates during photoinhibition of photosystem II—stable
reduced O. species promote chlorophyll triple Andersson, B. 1992 The reversible and irreversible inter-
mediates during photoinhibition of photosystem II—stable
reduced Q_A species promote chlorophyll triplet formation.
 P_{TCC} Natl Acad Sci USA 89 1408–1419 mediates during photoinhibition of ph
 Proc. Natl Acad. Sci. USA **89**, 1408–1412.
 Proc. Natl Acad. Sci. USA **89**, 1408–1412.
 Sakon Andre Comment Scientify Comments reduced Q_A species promote chlorophyll triplet formation.
 Proc. Natl Acad. Sci. USA **89**, 1408–1412.

Vass, I., Sass, L., Spetea, C., Bakou, A., Ghanotakis, D. &

Petrouleas V. 1996 IJV-B induced inhibition of photos
- Proc. Natl Acad. Sci. USA 89, 1408–1412.
ss, I., Sass, L., Spetea, C., Bakou, A., Ghanotakis, D. &
Petrouleas, V. 1996 UV-B induced inhibition of photosystem
II electron transport studied by EPR and chlorophyll fluores. II., Sass, L., Spetea, C., Bakou, A., Ghanotakis, D. & Petrouleas, V. 1996 UV-B induced inhibition of photosystem II electron transport studied by EPR and chlorophyll fluores-
cence- Impairment of donor and acceptor side c Petrouleas, V. 1996 UV-B induced inhibition of photosystem
II electron transport studied by EPR and chlorophyll fluores-
cence. Impairment of donor and acceptor side components.
Riochemistry 35, 8964–8973 *Biochemistry* **35**, 8964–8973.
 Biochemistry **35**, 8964–8973.
 SS J. Kirilovsky D. & Etier cence. Impairment of donor and acceptor side components.
 Biochemistry **35**, 8964–8973.

Vass, I., Kirilovsky, D. & Etienne, A.-L. 1999 UV-B radiation-

induced donor, and acceptor-side modifications of photo-
- *Biochemistry* **35**, 8964–8973.
ss, I., Kirilovsky, D. & Etienne, A.-L. 1999 UV-B radiation-
induced donor- and acceptor-side modifications of photo-
system II in the cynnobacterium Systemetric sp. PCC 6803. ss, I., Kirilovsky, D. & Etienne, A.-L. 1999 UV-B radiation-
induced donor- and acceptor-side modifications of photo-
system II in the cyanobacterium *Synechocystis* sp. PCC 6803.
Riochemistry **38** 19.786–19.789 induced donor- and acceptor-side modifications of photo-system II in the cyanobacterium *Synechocystis* sp. PCC 6803. *Biochemistry* **38**, 12 786–12 789. system II in the cyanobacterium *Synechocystis* sp. PCC 6803.
Biochemistry **38**, 12786–12789.
Wise, R. R. & Naylor, A. W. 1995 Chilling-enhanced photo-
oxidation: evidence for the role of singlet over and
- *Biochemistry* **38**, 12786–12789.
ise, R. R. & Naylor, A. W. 1995 Chilling-enhanced photo-
oxidation: evidence for the role of singlet oxygen and
superoxide in the breakdown of pigments and endogenous oxidation: evidence for the role of singlet oxygen and
superoxide in the breakdown of pigments and endogenous
antioxidants. Plant Physiol. **83**, 278–282. superoxide in the breakdown of pigments and endogenous superoxidein the breakdown of pigments and endogenous
antioxidants. Plant Physiol. **83**, 278–282.
Yruela, I., Pueyo, J. J., Alonso, P. J. & Picorel, R. 1996
Photoiphibition of photosystem II from higher plants. Effect
- antioxidants. Plant Physiol. 83, 278–282.
uela, I., Pueyo, J. J., Alonso, P. J. & Picorel, R. 1996
Photoinhibition of [photosystem II from higher plant](http://matilde.ingentaselect.com/nw=1/rpsv/cgi-bin/linker?ext=a&reqidx=/0021-9258^28^29271L.27408[aid=536791,csa=0021-9258^26vol=271^26iss=44^26firstpage=27408,nlm=8910320])s. Effect
of comer inhibition. 7 Biol. Chem. 271, 27408–27415. uela, I., Pueyo, J. J., Alonso, P. J. & Picorel, R
Photoinhibition of photosystem II from higher plants.
of copper inhibition. *J. Biol. Chem.* **271**, 27408-27415.

BIOLOGICAL
SCIENCES

THE ROYAL

PHILOSOPHICAL
TRANSACTIONS